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A linearized theory is proposed of the unstable motion of a thin shear layer formed
in a slot in a thin, rigid plate by unequal, parallel mean flows on opposite sides of
the plate. Liepmann’s asymptotic displacement thickness representation of the
influence of an unsteady boundary layer is used to model the quasi-periodic ejection
of vorticity from the slot at its trailing edge. Discrete intervals in frequency are found
within which energy is extracted from the mean flow by the unsteady motion in the
slot. When the mean velocities on opposite sides of the plate approach a common,
non-zero value, the number of these intervals increases without limit, indicating that
perturbation energy is supplied by the mean flow even when the Kelvin-Helmholtz
instabilities of a mean shear layer are absent. A detailed analysis of the motion in
the general case reveals that the net flux of fluid through the slot is composed of a
component ¢ caused by the to-and-fro motion of the shear layer, together with a
component ¢gn that accompanies the ejection of vorticity at the trailing edge. Except
at very small Strouhal numbers, ¢ and ¢n are of almost equal magnitude but of opposite
sign, so that the net flux arises from a delicate imbalance between these opposing flows,
and amounts to a small fraction of either one.

Application of the theory is made to determine the influence of the ejected vorticity
on the excitation of self-sustaining wall cavity oscillations, and on the diffraction of
sound by a perforated screen. Such screens are used to attenuate aerodynamic sound
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152 M. S. HOWE

in cross-flow heat exchangers. The theory is compared with Ronneberger’s (1980)
detailed observations of the motion of a shear layer over a wall cavity. Acceptable
agreement is obtained provided that, at the higher Strouhal numbers, the influence
of the finite width of the shear layer is included in the calculation of the growth rates
of the instability waves.

1. INTRODUCTION

A free shear layer in a nominally steady mean flow can execute large-amplitude fluctuation
when small, mean flow inhomogeneities trigger the growth of Kelvin—-Helmholtz instabilit
waves. The subsequent motion is often quasi-periodic in time. The periodicity is associate:
with the existence of a source of feedback that initiates a new instability wave on the shea
layer. Typical feedback sources are produced by: the pairing of discrete vortices formed in th
layer; the impingement of the shear layer on an edge or other obstacle; the proximity of a:
acoustic resonator, such as a wall cavity; etc. An extensive survey and bibliography of thes
and related phenomena is provided by the recent article by Rockwell & Naudascher (1979).

In a previous paper (Howe 19814, hereafter referred to as I), a linearized theory was prc
posed of unsteady shearing flow of a weakly compressible fluid over a two-dimensional slot i
a thin rigid plate. Earlier treatments of this problem are discussed and referenced in I, t
which the reader is referred for further details. The mean flow speed was equal to U ‘above
the plate (see figure 1), and vanished on the lower side; the shear layer within the slot we
modelled by a vortex sheet of infinitesimal thickness. The influence of viscosity was ignore
except in so far as it must be invoked (as in thin aerofoil theory) to satisfy a Kutta conditio
at the leading edge (A in figure 1) of the slot. The analytical representation obtained in I «
the displacement ¢ of the vortex sheet from its undisturbed position contains two disposabl
constants, which determine the amplitudes of the Kelvin—-Helmholtz instability waves. Whe
these constants are chosen to ensure that the vortex sheet is attached ({ = 0) to the plate ¢
the leading and trailing edges of the slot (A and B in figure 1), it was shown in I that ther
can be no net exchange of energy between the mean flow and the unsteady motion throug
the slot. Any small disturbance of the shear layer is accordingly damped in time. When, how
ever, the constants are fixed by the Kutta condition that ¢, 0{/0x; = 0 at A, where x;
measured in the mean flow direction, it was predicted that energy can be extracted from th
mean flow by disturbances satisfying 1.59 < ws/U < 3.49, where o is the radian frequenc
of the motion and 2s is the width of the slot. These inequalities constitute a simple criterio
for predicting, for example, the range of velocity U within which a wall-cavity resonance «
frequency  is excited, and experimental data cited in I give encouraging support for th
particular model of the motion of the shear layer. Application of the Kutta condition leave
conditions prevailing at the trailing edge B of the slot to be determined by the solution of tt
equations of motion, and it is found that the displacement { possesses a singularity proportion:
to the inverse square root of the distance from B. A relatively weak singularity of this type
perfectly acceptable in a linear theory, since in practice the observed motion at the trailir
edge is discontinuous and of large amplitude (a striking illustration of the behaviour is provide
by figure 4 of Ronneberger (1980)).

A more serious objection to this earlier analysis is that it takes no account of vorticity periodi
ally ejected from the slot on either side of the plate at the trailing edge. On the upper side .
the slot such vorticity is convected in the mean flow and produces a large perturbation in tt
boundary layer downstream of the slot. Semi-empirical theories of the interaction of the she:
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UNSTEADY SHEARING FLOW OVER A SLOT 153

layer with the trailing edge, such as those proposed by Heller & Bliss (1975), Ronneberger
(1972, 1980), and Tam & Block (1978), model the influence of the violent motion at the trailing
edge by means of a dipole line source, located at B with the dipole axis perpendicular to the
plate. This source is assumed to characterize the periodic ejection of vorticity.

X9
U l__
vortex *
rigid plate /‘ sheet
A B
2s

Ficure 1. Schematic illustration of the problem considered in I.

In the present paper the theoretical discussion given in I is extended in two ways. First the
basic mean flow is generalized to include the possibility of there being parallel mean flows on
both sides of the plate (see figure 2). Second an asymptotic theory is introduced to account for
the influence of the ejected vorticity. This is based on a proposal due to Liepmann (1954) for
calculating the aerodynamic noise generated by a turbulent boundary layer (see also Laufer
et al. 1964; Howe 1981, ¢). Liepmann’s idea is to represent the unsteady flow induced by the
vorticity in the boundary layer in terms of the corresponding fluctuations in the boundary
layer displacement thickness. A linearized theory cannot take explicit account of discrete
vortices in the boundary layer, but it may be expected that their aggregate effect on the exterior
fluid will be adequately represented by a superposition of harmonic displacement thickness waves
that propagate downstream from the slot. This simplified version of the problem is still too
difficult to treat analytically in full generality and, following Liepmann, we shall confine
attention to the asymptotic case of small Strouhal number wé/U < 1, wherein the length
scale of the displacement thickness waves is large relative to the width §, say, of the boundary
layer. In this limit the magnitude of the displacement thickness perturbation, which provides
a boundary condition for the determination of the potential flow in the region outside the
boundary layer, may be assumed to be specified on the surfaces of the plate downstream of the
slot (cf. Howe 19815).

The displacement thickness waves are generated at the trailing edge B of the slot, and their
presence will be shown to furnish an additional disposable constant which can be chosen to
remove the singularity in the displacement ¢ of the shear layer that arises in the analysis given
in I. An analogous condition has to be imposed in the theory of the flue organ pipe discussed
by Howe (19815), although the influence of the unstable free shear layers of the organ pipe jet
are of less significance than in the slot problem. It was deduced in that study that displacement
thickness waves excited by sound incident on the lip of the mouth of the organ pipe leads to
a net gain of acoustic energy at the expense of that of the mean jet flow. This conclusion remains
valid in the present case of unsteady shearing flow over a slot — vorticity ejected from the slot
tends to promote the extraction of mean flow energy to support the fluctuations within the slot.

The asymptotic problem is formulated and solved in §2; the derivations of several analytical
results are collected together in the Appendix. In §3 a general formula is derived for the rate
at which acoustic energy is extracted from the mean flow. It is shown that as the mean shear
across the slot is reduced, by causing the mean flow velocities on opposite sides of the plate to
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approach a common, non-zero value, the Strouhal number interval 1.59 < ws/U < 3.49
obtained in I within which energy is extracted from the mean flow is progressively augmented
by a sequence of intervals at higher frequencies, which ultimately, when the flow velocities are
the same, are of equal width and are spaced at equal intervals in frequency. Application of
these results is made to determine the influence of vorticity ejection on the prediction given in
I of the dependence on mean flow velocity of the frequency of self-sustained oscillations of a
wall-cavity. An explicit representation is given in §4 for the displacement { of the vortex
sheet, and the dependence of the profile on the magnitude of the mean shear is examined.
In particular one finds that, as the length scale of the displacement thickness waves diminishes
to zero, the limiting form assumed by ¢ coincides with that predicted in I. This indicates that
the back-reaction on the slot of displacement thickness waves that violate the asymptotic
condition w8/U < 1 of the theory may not be significant in practice. The unsteady flux of
fluid through the slot is partitioned between that due to the motion of the shear layer and a
component associated with the ejection of vorticity at the trailing edge. It is shown (§4) that,
except at very small Strouhal numbers, the component fluxes are of almost equal magnitude
but are 180° out of phase; accordingly the net flux tends to be small compared with either of
these components. '

In §5 we consider the special case in which the mean flow velocities are the same on both
sides of the plate. Comparison is made with an analysis of this problem given previously by
the author (Howe 1980) which took no account of vorticity ejection, and predicted that the
displacement { of the vortex sheet has a simple (finite) discontinuity at the trailing edge of the
slot. It is argued that the present theory gives a more realistic modelling of the flow, and
application is made to obtain the corresponding corrections to the results of Howe (1980)
concerning the diffraction of sound by a perforated screen in a uniform mean grazing flow.
The earlier practical predictions of the attenuation of sound by such a screen when placed,
for example, in the cavity of a cross-flow heat exchanger, are shown to be only marginally
modified. Finally, in §6 the theory is checked against the very recent experimental studies of
Ronneberger (1980). When due account is taken of differences in the experimental and
theoretical configurations, it can be concluded that acceptable agreement is obtained between
the theoretical and measured profiles of the displacement § of the shear layer provided that,
at the higher Strouhal numbers ws/U, the influence of the finite width of the shear layer is
included in the computation of the growth rates of the Kelvin-Helmholtz instability waves.

2., LINEAR THEORY OF UNSTEADY SHEAR FLOW OVER A SLOT

A thin rigid plate lies in the plane x, = 0 of a rectangular coordinate system (xy, %y, %3) as
in figure 2, with the x,-axis dirécted out of the plane of the paper. A slot of width 2s occupies
the portion || < s, —0 < 3 < o of the plate, and in the undisturbed state the fluid is in
motion parallel to the x;-axis at speeds U,, U_, U, > U_ > 0, in x, 2 + & respectively, where
8 > 0 is a characteristic boundary layer width. The shear layer in the slot has thickness of
order 28 which is taken to be small compared with 2s. A uniform time-harmonic pressure
poet (0 > 0) is applied in the region #, > 0, and it is required to determine the subsequent
motion of the system in the linearized approximation.

The sound speed ¢ and the mean density p, are assumed to be constant throughout the flow,
and we shall also require that M2 <1, ks<1, ’ (2.1)
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UNSTEADY SHEARING FLOW OVER A SLOT 155

where M = U,_/c is the Mach number of the flow in %, > 4, and £ = w/c is the acoustic
wavenumber. The characteristic acoustic wavelength is therefore large compared with the
width of the slot. In the following the harmonic time factor e will not be explicitly displayed.

Consider a plane control surface X, (dashed line in figure 24) parallel to the plate and at a
distance & from it, just outside the boundary layer on the upper surface. Let Z_ (x,) denote the
xy-component of the displacement of fluid particles lying in X', from their undisturbed positions.

(a) U
e b
_________ AT B
f Ny
U
//\\
() e ™~

\\_—_//

Fi1GURE 2. (a) Definition of the shear flow problem.
(b) The asymptotic idealization for wé/U, < 1.

As in I a Green function G (%, y,) is introduced that satisfies the convected wave equation
{(—ik+ M, 0/0x,)* — (8*/0x}+ 0%/ 0n3)} G (%, 9,) = O (2.2)
in ¥, > &, and the condition 0G,/0xy = 0(%y—y,) (2.3)

on x, = §+0, &(x) being the Dirac delta function. In specific applications G, must satisfy
additional conditions, such as an appropriate radiation condition, and also take account of
the possible existence of scattering centres on the plate at points remote from the slot.

The perturbation of the flow in x, > & may be described by a potential ¢, say, which can
be expressed in terms of Z,, G, by means of

8.8) = (—io+ U gp) [* 2,006 m) (2.4

(cf. equation (2.6) of I). By making use of the linearized form of Bernoulli’s equation p, /p,+
(—iw+U,0/0x;) ¢, = 0, it follows that the total perturbation pressure p, in x, > & can be
expressed as

. 0\2 x>
e e A N I ACALRERAL VRS (2)
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Similarly, in ¥, < — & we have:

: 9\t [=
A R A R ACNINEPALA (2.6)

where Z_(x,) is the x,-component of the displacement of fluid particles lying in the plane X_
of figure 24, and, in x, < — 8, G_(#, y,) satisfies (2.2) with U, replaced by U_ and is such that
0G_/oxy = —8(x,—y,) on x, = —8—0.

U, Z=Kei=l

|

1%

7 -

Ficure 3. A neutrally stable displacement thickness wave of constant form satisfying wé/U, < 1 propagates at
speed V on a vortex sheet that separates the mean stream from a uniform wall flow at speed V.

We now introduce the hypothesis that the displacements Z; and the boundary layer width
8 are small compared with the length scale of variation, U, /w, of the motion. It may then be

assumed that, for |1, < s, ;
Zi(%) = Z_(x) = Z(xl)’}
P+ = P—a

since the relative magnitudes of inertia forces associated with the motion of the shear layer in
the slot are proportional to w?8Z/U? < 1. This is equivalent to replacing the shear layer
within the slot by a vortex sheet. In this same asymptotic limit, the control surfaces 2+ may
be taken to coincide respectively with x, = + 0. The second of equations (2.7) therefore implies
that, for |x,| < s:

gy 0\ [®
(o) +ilU_ -67) f Z_(4,)G_(x,, =0, y,)dy,
1 —

(2.7)

. 0\2 [
(ot gz) 7z Grtn +0.m)an = -2 (28)

On the surfaces Xy downstream of the slot (¥, > s), Z. represent the displacement of fluid
particles just outside the boundary layers. It will here be assumed that an adequate approxi-
mation to these displacement thickness fluctuations is provided by the sinusoidal waveforms

Z, = Kyerem, Z_ = K -m, (2.9)

where k) are constant, and the wavenumbers k are determined by the mean velocity profiles
of the boundary layers. In general, for a given frequency & > 0, a wall shear layer can support
many such waves corresponding to a spectrum of values of x+. However, the analysis of simple
model problems indicates that as w8/U, - 0 all possible wave modes coalesce (see, for example,
Betchov & Criminale 1967), and this will be taken to justify the use of (2.9). Figure 3 illustrates
such a representation of displacement thickness waves on an idealized ‘top hat’ mean velocity.
profile. The mean velocity is equal to U, for x, > & and Vfor 0 < x, < 8. As wé/U, > 0it
may be shown that x, — w/V.

The boundary layer displacement thickness waves propagate in the direction of the mean
flow. In general it may therefore be assumed that Z; vanish in the region upstream of the slot
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(%; < —s). It would be necessary to relax this condition if boundary layer disturbances were
known to be generated elsewhere in the flow and to be subsequently incident on the slot. In
practice, the present hypothesis is equivalent to assuming that any such waves that are incident
from upstream are uncorrelated with the applied pressure p,, and may accordingly be treated
separately in a linearized approximation.

To simplify the integro-differential equation (2.8) we introduce the dimensionless variables

£ = /s, 7 = Y/5;
E=12fs, L= Zi/s; (2.10)
ex = ws/Us, v =U/U,.

It

It will often be convenient to omit the suffix + from e, and ¢, ¢, will be used interchangeably
in the latter sections of this paper.
According to (2.9) we have in § > 1:

gi = hiei‘rig’

. 2.11
where hy = K fs, ox = JKJ (2.11)

Conservation of matter does not permit the constants /. to be specified independently. Indeed,
when quantities of O(M?) relative to unity are neglected, it follows from the equation of con-
tinuity that there can be no net flux of fluid away from the plate, so that

f°° (—iw+U+ 52—) Z, (x,) dx, =f°° (—iw+U_ %) Z,(x,) dx,. (2.12)
— 1 1

— 00

Recall that Z, = 0 for x; < —s. The convergence of the integrals in (2.12) as x; > +00 is
ensured by the causality condition. This requires that Z. should be regular functions of
in the upper half-plane, and may be assumed to vanish as Im w —+o00. Hence, when Im o
is sufficiently large and positive, Im o+ must also be large and positive. The integrals can
therefore be evaluated for such w, and their values as Im (w) - +0 obtained by analytic
continuation. In this way one deduces that

h+eia-+/o-+ — /Z__Ci”‘/O'__ = _iqh’ say. (2.13)

Note that the above argument remains valid if Im (o+) < 0 when o is real, i.e. in the event
that the displacement thickness waves are unstable and grow exponentially with distance
downstream of the slot. The back-reaction of such waves on the motion in the slot is therefore
seen to be finite. This treatment of instabilities may be contrasted with that recently advanced
by Dowling et al. (1978), who deliberately suppress instability modes on the grounds that the
linearized solution should be bounded everywhere. However, the author has shown in a recent
study (Howe 19814d) that the application of such a procedure would result in there being no
effective back-reaction of the displacement thickness waves on the motion in the slot.

The dimensionless flux @ of fluid through the slot into x, > & is defined by

Q = q+qn;

© . 2.14
o= [ woas o= o (214

The component ¢ represents the fluid displaced by the motion of the vortex sheet. The second
term gy is the flux due to the displacement thickness fluctuations downstream of the slot, and
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is associated with the flow through the slot that occurs during the formation of the displacement
thickness waves. This flow takes place in a region whose dimension is comparable with the
characteristic scale & of the mean shear layers. The present asymptotic analysis cannot resolve
the details of structures of this size, so the flow appears to occur within an infinitesimal interval
of the £-axis at the trailing edge.

When the inequalities (2.1) are fulfilled, G+(#, y;) assume a common form in the acoustic-
near field of the slot:

so that, in particular,

Gi(%, 1) = 7 In [{(xy —91)2 + 3} /5] + e, }
| (2.15)

Gi(xy, £0,9,) = Gx(£,9) = ntIn |£—9| +as,

where a; are complex constants (particular examples are discussed in I). Substituting into
equation (2.8), and making use of the definitions (2.10), (2.11), (2.14), we find that the dis-
placement of the vortex sheet satisfies »

{(e++i %)2+ p2 (e_+i a—ag)z} fil E(n) In |E—q|dy
= ~m(Qe} (4, +a.) +Ao/po UL} - (“’*+i a_ag)zf hyetr+vn |E—g|dy
-2 (e_+i§z)2f:°h_ei"—’l In|E—9y|dy (|§] < 1). (2.16)

The right-hand side of this equation may be simplified by making use of the integral identity

© ] ©  ethE-Ddk
fopy io. —_ - io — —
[T o=t ey njg=nldy = ihyeos (-0 /o) [ oy @10

in which use has been made of (2.13), and where it may be temporarily assumed, as above,
that Im o+ > 0. We now have

{(e_,_+i 562)2_{_ v? (e_+i a%)z} f_l_l &) In |E—7|dy
= —n{Qe} (4, +a.) +po/poUi}—{(e++i %)2+ vt (e_+i a%)z} f :° hie”+71n |E-7dy

. - o L 0\2 [ elkE-DdE
+lk+vaei + (l—a) (€_+l 'a—g) fo m (|§| < 1). (2.18)

Integration with respect to the differential operator in the curly brackets on the left side yields

[ taymig-glan = x® (18l <0, (2.19
in which
X(E) = —§n{Q(ay +a_) +po/po€} UL} +aetat +/>’e"=‘—f:° hye”+71n |E—q|dy
. - g \ [© (k—e_)2et-Ddk

+ik, veeb (1—&:) fo e (2.20)
S(k) = (k—o_) (k—0,) {(k—e,)+ 12 (k—e )%}, (2.21)

and ¢, , are given by:
€ = e(1+i)/(1+iv), € = e¢(1-i)/(1-iv). (2.22)

As in the corresponding equation (2.18) of I, « and £ denote the amplitudes of the Kelvin-
Helmholtz waves of the vortex sheet in the slot characterized by the conjugate wavenumbers
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€,5- The influence of the displacement thickness waves is contained in the terms in x(£) that
involve &,.

The integral equation (2.19) determines the displacement ¢ of the vortex sheet in terms of
the applied pressure p, and the three parameters a, £, 4, ; the flux @ can be calculated in terms
of these quantities from its definition (2.14). The values of a, f, A, will be chosen to satisfy the
Kutta condition at the leading edge of the slot, and such that { remains finite at the trailing
edge, i.e. we shall require that

(&), 0L(§)/OE—~>0 as §—>—1+0,}

L) <o as E—->+1-0. (2.23)

The solution of (2.19) may be expressed in the form (Carrier et al. 1966, p. 428)

&= {n(1-£)-1{0(x, £) —Oo(x)/In 2} (|¢] < 1), (2.24)
where O,(x), ©,(x, &) are linear functionals defined by
Lt x(mdy
o = i, it

— m2)3 47
6 &) = 3 f L=rExEd,

(2.25)

the second integral being a principal value, and x'(y) = Ox/o9.
Integrating equation (2.24) with respect to £ over (—1, 1), and noting that the contribution
from the principal-value integral vanishes, we find

gln 2+ 6y(x) = 0. (2.264)
This result may be used to express the conditions that { should remain finite or vanish as

£ ->F1+0in the form lim {g+06,(x, £)} = o. (2.26, ¢)
E->F140

The Kutta condition will be satisfied provided that
lim {00,(x, £)/0&} = 0. (2.264d)
£—->—1+40

These equations determine the constants ¢, a, £, &, in terms of the applied pressure ,. The
details are given in the Appendix, where the integrals appearing in (2.26 a-d) are also evaluated.
At this point it is sufficient to quote the result for the net flux @, defined in (2.14), namely
Qin 2 — hn(a, +a) +F(6)} = npo/2peét U (2.27)
The complex-valued function F(e) is defined in terms of €, 5, o+ and the Bessel and Hankel
functions J,, H{" by means of
F(e) = [[Jo(er) —€x(H/ F) {So(e1) —iAi(e1) }] [(1/ 6= 1/0,) Jy(ea)
+63(G/F) {Jo(€a) —iJi(€2) )] — [o(€2) — €2(H0/ F) {Jo(€z) —i(€2) }]
x [(1/ex=1/0,) Jo(€1) +€1(G/F) {Jo(€1) —iJi(e2) }]1/4, - (2.28)
where 4 = Jy(es) Ji(€1) — Jo(€1) Ji(€2)
+ (e1/F) {3 I (e2) — A1 Jo(€0) }{Jo(er) —ia(e1)}
— (ea/ F) (o Ji(e1) — H1Jo(€2) o (€5) —ii(€2) }5 (2.29)
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F = o, {H{M(o,)-iH{M(0,)}
-1¥(1l—0_Jo,) é M {H®(0;) —iHD ()} eler—op; 2.30
—/0+ P f; 0 \0y 1 )5 € H (2.30)
4
G = ¥(1=0_/0,) 3 (1=0,/0,) (0~ e ) H{(a,) eter=od/f}; (2.31)

#, = HO(0,) v (1-0_/0.,) T o,(0,—_)tH{®(0,) elo+=o/f} (n = 0,1). (2.32)
=1
In (2.30)-(2.32) the shorthand notation o, (j = 1, 2, 8, 4) has been introduced:

(2.33)

0y =0,, 0y, =0_, 03 =¢6, 04= Gz;}
and Si = (&f/0k) =gy

Equation (2.27) has the same structure as the corresponding equation (2.28) of I, and it is
shown in the Appendix that the functional form of F(€) reduces to that given in I (equation
(2.29)) when v = 0 and |os| = 0. As this limit is approached the wavelengths of the boundary
layer displacement thickness waves diminish to zero and, except at the trailing edge £ = 1
of the slot, there is effective cancellation of the velocities induced in the flow by the successive
elements of the displacement thickness fluctuations.

3. EXTRACTION OF ENERGY FROM THE MEAN FLOW

The mechanical energy in the neighbourhood of the slot is partitioned between (i) the kinetic
energy of the mean flow; (ii) the kinetic energy of the essentially incompressible perturbations
associated with the near fields of the displacement thickness waves and the vortex sheet within
the slot; and (iii) the energy stored in the mechanism responsible for the applied pressure p,.
The displacement thickness ‘waves transport kinetic energy away from the slot, and in the
absence of further interactions (in particular when the relatively weak quadrupole coupling
with the acoustic field is neglected) that energy remains localized near the boundary layer.
The applied pressure p, will usually represent a sound wave incident on the slot, and it is
convenient, henceforth, to refer to it in these terms, although it could equally well characterize
a large-scale, incompressible disturbance (an ‘evanescent’ sound wave). This incident acoustic
energy may be partially absorbed by the vorticity field during the formation of the displace-
ment thickness fluctuations. Alternatively, the interaction with the slot of unsteady vorticity
within the slot may result in a net gain in acoustic energy. In such circumstances the mean
flow must be the ultimate source of this additional energy. We now establish a general result
(stated without proof in I) that acoustic energy is extracted from the mean flow at Strouhal
numbers ¢ = ws/U, satisfying Im {F(¢)} < 0.
 Consider the flux of acoustic energy through the semicircular cylindrical control surfaces
S of figure 25 whose common radius r > 5, and satisfies also r < 1, so that the acoustic
wavelength greatly exceeds r. Let v, denote the component of the acoustic perturbation velocity
in the direction of the outward normal to S, and let 77, be the net acoustic energy flux through
S, away from the slot per unit length in the xg-direction. Then '

1, = 1" <poya, | (3.1)
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where (r, 8) are polar coordinates of a point on S, and the angle brackets denote an average
over a wave period 2rn/w. Equation (3.1) neglects a possible contribution to the energy flux
due to convection of sound by the mean flow. This would give an additional component that
is O(M?) relative to (3.1) and is therefore neglected (see, for example, Ffowcs Williams &

Lovely 1975).

3 T I T
- -4
2 o —
1+ _
or Kz
1 l A 1 l 1
0 159 2 349 4

Ficure 4. Variation of the real and imaginary parts of F(¢) for v = 0, 07, - ©
(no displacement thickness waves): — — —, —Re F; ——, Im F.

Using the definition (2.5) of p, together with the explicit representation (2.15) of G (#, y,),
it follows that, for r = |&| > s,

by = po*sHntn (r/s) +a,} f: & () dn +py

= pew2Q{n=11n (r/s) +a,}+po, (3.2)

in which the definition (2.14) of @ has been used. Next, equations (2.4), (2.15) show that for
r > s, the slot-induced flow is equivalent to that of a monopole source for which

v, = 0¢,/0r ~ —iws?Q/nr. (3.3)

To evaluate the integral in (3.1) we must first restore the harmonic time factor et in the
definitions of p,, v, and take the real parts of the resulting expressions. In this way we find

11, = }pows*{i((ws)®|Q|%a, + po @*/po) +c.c.}, (3-4)

where c.c. denotes the complex conjugate of the preceeding quantity, and an asterisk denotes
the complex conjugate of a variable.
Similarly, the corresponding flux of acoustic energy away from the slot through S_ is found

to be II_ = }ipyw?s|Q|%a_+c.c. (3.5)

Adding (3.4), (3.5) and using (2.27) to express po/p, in terms of @, we find that the net rate
of production of acoustic energy, 11, say, at the slot, is given by

InIr=1mrn_+1II_
= — Y, s(ws)¥| Q[ Im (F(6)} (o > 0), (3.6)
and therefore that a net gain of acoustic energy occurs at the slot provided that Im {F(e)} < 0.

In the general case discussed in I, v = 0 and |o+| - o (absence of displacement thickness
waves), and figure 4 illustrates the corresponding dependence of F(¢) on real values ofe = ws/U,.
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In the cross-hatched region Im {F(e)} < 0 and 1.59 < ¢ < 3.49. To assess the influence ¢
the displacement thickness fluctuations and the mean shear v, it is necessary to specify th
relation between the wavenumbers o and the Strouhal number €. This is determined by th
mean velocity profiles of the boundary layers. Large-scale boundary layer disturbance
characteristically convect at about 60 9%, of the mean stream velocity (cf. Bull 1967, Blak
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E§ the displacement thickness waves propagate according to (3.7) at 60 %, of the local mean stream velocit
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19770), and our theoretical results will therefore be illustrated for this case. We shall assume,

in fact, that o = 5ws/3U,, i.e.
o, = 5¢/3, o_ = 5¢/3v, (3.7)

Figures 5a4—f indicate the variations of F(¢) calculated from equation (2.28) for v = 0, 0.1,
0.25, 0.5, 0.75, 1 respectively, and for the o, defined by (3.7). Observe that o_ - o0 as v - 0,
and there is in this case no effective contribution from the displacement thickness waves on
the lower side of the plate. A comparison of figures 4 and 54 shows how the conclusions of I
are altered by the presence of the displacement thickness fluctuations. In particular, the

pha'se velocity= j

Im {F(e)}

Ficure 6. Variation of Im {F(¢)} for 1 < ¢ < 3.5, v = 0, and for different
values of the phase velocity of boundary layer disturbances.

principal region in which Im {F(e)} < 0 now corresponds to the Strouhal number interval
1.23 < € < 3.27, and the magnitude of the minimum value attained by Im F (& —0.72) is
significantly greater than in figure 4. These differences have important consequences in the
application of the theory to self-sustained oscillations of a wall-cavity, and are discussed in
more detail below. For a given value of the net flux @ it appears from (3.6) that the influence
of vorticity ejected from the slot, which is here modelled by the displacement thickness waves,
is to increase the rate at which acoustic energy is extracted from the mean flow. This conclusion
could, of course, depend on the choice (3.7) of the phase velocities of the boundary layer dis-
turbances, but figure 6 reveals that, for » = 0, the peak value attained by —Im {F(¢)} in the
range 1 < e < 3.5 gradually increases as the phase velocity increases from zero to U, (corres-
ponding toco > o, > €).
It may be shown from the defining equations (2.28)—(2.32) of F(¢) that, for v < 1,

Fe)>—-2 as e—oo. (3.8)
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As v increases from zero it is seen from figure 5 that, before this asymptotic limit is approached,
Im F is significantly less than zero in a progressively increasing number of distinct intervals
of €. Moreover, the peak values attained by —Im F in these intervals can be very much larger
than for v = 0. As v - 1 (vanishing mean shear) the ratio (2.28) defining F(¢) becomes in-
determinate, since €, > €,, o, - o_. Resolving the indeterminacy by means of I'Hospital’s rule
we find

Fle) = (e40)t 3+ {H{(0) | F o} [(1] = 1/6) LT3 =63 +-T)} - (u/e) (Jo—i)], (3.9)
h
M Ay = R = el H(0) T} (Jo=i)] + (o= i/€) o= lHD(@) [ F2 (o= i)]
{HP(0) J, ~ HD(0) Jo} (y—ie(dy— i)}/ Foy (3.10)
F, = o{HP(0) ~iHP()), (3.11)
in which we have set Jo1 = Jo(€)y o =0, =0 (3.12)

The arguments of the Bessel and Hankel functions in these expressions are real, which implies
that when e is large, F(e) is ultimately the periodic function

F(e) = — (3 +ie¥¢) /(3 —sin 2¢). (3.13)

The period is equal to n, and the limiting behaviour is already evident in figure 5f. Thus, for
v = 1 there exists an infinite sequence of intervals within which Im F < 0, and where acoustic
energy is extracted from the mean flow. This conclusion is particularly interesting, since it
implies that an energy transfer can occur in the absence of instability waves. Indeed, when
Im F < 0 a net gain of acoustic energy occurs because that generated during the ejection of
vorticity at the trailing edge B of the slot exceeds that dissipated at the leading edge A by the
shedding of vorticity into the mean flow. This interpretation accords with the predictions of
related model problems reported by Howe (19815, §§4, 5).

Self-sustained cavity oscillations

The theory developed in I in the absence of displacement thickness fluctuations was applied
to the problem of self-sustained acoustic oscillations of a deep cavity in a wall in the presence
of a nominally steady, mean grazing flow. The configuration is illustrated in figure 7, in which
a cylindrical cavity of depth / has rectangular cross-section of dimensions d x% (I > d, k), and
communicates with the ambient medium through a slot of length 4 and width 2s (s < d).
The principal axis of the slot is at right angles to a mean flow of speed U (= U, ). Approximate
expressions for the coefficients a4 that occur in the definitions (2.15) of the Green functions G+
were obtained in I by assuming that the perturbed flow in the vicinity of the slot can be re-
garded as two-dimensional (i.e. uniform in the direction of the xg-axis).

Depth-mode oscillations within the cavity (which is equivalent to an organ pipe open at
one end only) have radian frequencies w,, given approximately by

w, = (n-Pwe/l (w=1,2..). ' (3.14)

These oscillations are attenuated by the radiation of sound into the ambient medium and
through viscous and thermal action in the acoustic boundary layers on the cavity walls. In
addition, the perturbation of the mean shear layer over the slot by the acoustic flux leads to
an exchange of energy between the standing waves within the cavity and the mean flow, and
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energy will be extracted from the mean flow if —Im {F(e,)} > 0, where ¢, = w,s/U. Self-
sustaining oscillations are possible provided that sufficient energy can be supplied by this
means to overcome the various dissipative mechanisms. It is shown in I that this requires

Im {-F(e,)} > D(n), (8.15)

where D(n) = (n—})nd/4l+3(/h)2(1+h/d) {r/(2n—1) I} (P} + (y— 1) 3}, (3.16)

in which ¥, ¥ respectively denote the kinematic viscosity and the thermometric conductivity
of the fluid in the cavity, and 7 is the ratio of specific heats. The first term on the right of
(8.16) arises from the radiation damping, and the second from the boundary layer losses.

/

S« rigid wall

Ficure 7. Configuration of the wall cavity used in the analysis of self-sustained cavity oscillations.

Since there is no mean flow within the cavity we take » = 0 in the definition (2.28) of F(g).
Referring to figure 6 we see that in this case Im F < 0 in the range 1 < € < 3, the precise
values of the limits being dependent on the choice of the displacement thickness phase velocity.
The behaviour of Im Fin the neighbourhood of the minimum may be specified by the following
quadratic approximation: '

. Im {F(e)} = —A+B(e-C)?, (8.17)

where the constants 4, B, C are positive. By substitution into (8.15) it follows that self-sustained
oscillations are possible for Strouhal numbers €, = o,5/U that satisfy

C—[{A-D(n)}/Bl]t < €, < C+[{A-D(n)}/B]}. (3.18)

Equivalently, this implies that the nth cavity mode can be excited provided that '
Umin <Ux< Umax, ' (3-19)

where Umin _ ﬂ'(n — %) (S/l) . Umax —_ ﬂ(ﬂ - %) (S/l) (3'20)

¢ ~C+[{4-Dm}YBY ¢  C-[{4-D@)}/BI¥
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Example

A wall cavity for which / = 30cm, d = & = 0.2/, and s = 1 cm was considered in I, where
vorticity ejection from the cavity was neglected. For air we take ¥ = 0.15 cm?s~1, ¥ = 0.21 cm?
s7l, ¥ = 1.4 and ¢ = 340 m s~ in which case

D(n) = 0.157(n—3){1+0.113/(n—$)}} (n=1,2,...). (3.21)

The case (i), say, discussed in I corresponds to o+ = oo in (2.28) (no displacement thickness
waves), for which we have (cf. figure 6)

case (i): A4 =031, B =069, C= 225 (3.22)

When the displacement thickness wave velocity is equal to 0.6U, so that for v = 0 we have
o, = %€, o_ = o0, one finds

case (il): 4 =0.72, B & 1.34, C = 2.07. (3.23)

The corresponding predicted values of Uy, Upyax for n = 1, 2, ... are given in table 1.

TasLE 1
case (i), 0, = © - case (ii), 0, = %e

(4 A A} r -A A Y

Um.ln Um! Umin Uma:
n ms-! ms-! ms-t ms-?
1 6.36 10.45 6.48 12.79
2 20.99 27.32 20.06 36.14
3 —_ —_ 34.83 56.19
4 _ — 51.57 72.31
5 — — 75.15 79.79

In case (i), D(n) > A for n > 3; the corresponding values of Upy, Upax are complex, so
that such modes cannot be sustained by the mean flow. The corresponding cut-off occurs in
case (ii) atn = 6. It is apparent that the influence of vorticity ejection is to increase the number
of modes that can be excited (by increasing the maximum value of —Im F), and to extend
the range of velocities (Upyp, Upnax) Over which a particular mode is sustained.

4, THE CHARACTERISTICS OF THE SHEAR LAYER MOTION

The formal expression (2.24) for the displacement { of the vortex sheet will now be examined
in more detail. Making use of the expressions defining 0,(x), ©,(x, £) obtained in the Appen-
dix, one finds that the ratio {/Q can be expanded as the Fourier series

é = £ aysin (u9), (4.1)
where & = arccos £ (0 < ¥ < =w), and
B AR TS AC S A I )

The values of the ratios /@, 8/Q, k,/Q are given by equations (A 27) of the Appendix, and
I}, S, are defined by (A 5), (A 22).
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It is shown in the Appendix that, when 7 is large,

S, ~ V2 l—o/o. (_i)n. (4.3)

1 ~ (_l)n
I~ 1+2 n

b

Since J,(z) ~ (z/2)"/n! for large n, we deduce that, as n - co,

_ 2 h e+ 141v20_Jo
w8, = — -+ / +, (4.4)

¢ m  Q 142

This result, that a, ~ O(1/n), implies that the series (4.1) does not converge uniformly in
(0, m), and in particular that {/Q does not vanish as ¢ -~ 0 ({ = +1) even though every
member of the series does. The non-uniformity is avoided by writing

£_ 3 (a,-a,)sin (1) + 3 @, sin (nd). (4.5)
Q n=1 n=1
The second series can be summed (Gradshteyn & Ryzhik 1980, p. 38), which leads to
Yy y 980, P
{  h.e+ 1+v20_[o, 12) o S\
0="0 T2 (1 - +n§l (a, —a,) sin (nd). (4.6)

In the remaining series the coefficients ¢, —a, ~ O(1/n%) as n—> oo (see equation (A 12)),
and the sum therefore vanishes at 4 = 0. Thus at the trailing edge of the slot

¢  hoei+ 1+1v20_[o,

Q Q 1+2

1 Udh, elo++U2h_eio-
=Q' ik U.?_-i'UE . (4.7)

This shows that, when o, = o_ (so that 2, = h_), the displacement { of the vortex sheet at
the trailing edge of the slot merges continuously with the boundary layer displacement thickness
perturbations. In general, however, the displacement is discontinuous at { = 1, and the limiting
value of the vortex sheet displacement is equal to the average of the boundary layer displace-
ments weighted according to the respective mean dynamic pressures p, U}.

The Fourier coeflicients (a, —a,) decay rapidly with increasing values of #, and equation
(4.6) may readily be used to compute the displacement of the vortex sheet. We shall compare
this with the displacement predicted in the absence of displacement thickness waves. The
latter may be obtained by interpreting (4.1) as a generalized function, and taking the formal
limit o1 - oo in the definition (4.2) of the Fourier coefficients a,. Equations (A 11), (A 24)
of the Appendix imply that

I} ~ (—i)(mi/20,)}, }
Sp = (=i)m {2/ (1+v2)}{(ni/20, )}~ (0_/0,) (ni/20_)1},

as oy —> 00, and the corresponding contributions to the Fourier series (4.1) accordingly involve
the (generalized) sum

(4.8)

12

o _ sin(®) _ 1+¢
%, sin (09) = S cos (0} = 2(1= g9

]

(4.9)

n

The singularity in this result at § = 1 occurs because the asymptotic forms (4.8) are actually
valid only for o4 > n, and their use is tantamount to discarding the tail end of the infinite
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series (4.1). When o are large the influence of the displacement thickness waves is confined
to the tail, which makes a non-trivial contribution only in the immediate neighbourhood of
the trailing edge of the slot.

Using (4.8) and (4.9) in (4.1), and taking the limiting values of «/Q, £/Q and k,/Q (in
equations (A 27)), we obtain, as oy - 0,

4
q

1+ 1) [Jy(e) = i) = ea))] 52 [y(e) — iy (o)~ ] ]
(4.10)

Ta(i- gz)*[

wizo @ (b) ] (e (d)
_ - _—— T

IRLEEE — .

A —\- - -

T
Figure 8. Predicted displacements of the vortex sheet for € = 2.3 and for different values of the phase wt. The
mean flow is from left to right: (a) equation (4.10) with ¥ = 0 (no displacement thickness waves);
(b) equation (4.6) with v =0, o, = 5¢/3, o_ = ©; (¢) equation (4.6) with v = 0.5, o, = 5¢/3,
o_ = 5¢/3v; (d) equation (4.6) with v = 1, 0, = 5¢/3.

where
Ao = Jy(€3) Ji(€1) — Jo(€1) Ji(€2) + 2(62 —€1) {Jo(€1) —iJy (1) }{o(€) —ii(€5)},  (4.11)

S(z) = £Jy(2) +iJy(2) — 2 sin (9) él i sin (n9) J, (2), (4.12)

and it has been noted that Q - ¢ as 0. - o0 (see equation (4.14)). Equation (4.10) coincides
with the analogous result of I which neglects at the outset the influence of the displacement
thickness fluctuations.

We illustrate the vortex sheet profiles predicted by these results by a consideration of the
particular case € = ws/U, = 2.3. This is close to the value of ¢ at which —Im F attains its
maximum value when v = 0 and when displacement thickness waves are neglected (cf. figure
4). Equation (4.10) has been used to plot Re {({/¢) e~*} in this case (figure 84) at intervals
of the phase wt equal to {r in 0 < wt < n. The waveform during the second half-cycle
T < ot < 2x is obtained by inverting the profile at time n/w earlier. At £ = 1, £ - co like

(1-¢)+.
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Figures 84-d depict the corresponding profiles (drawn to the same scale as 8a) predicted
in the presence of displacement thickness fluctuations by (4.6) for v = 0, 0.5, 1 respectively,
and when the displacement thickness phase velocities are equal to 609, of the mean stream
velocity (as in (3.7)). The displacement ¢ is finite at £ = 1. For v = 0, o is finite, but o_ = o0
and (cf. (4.7)) §{—> h,el+ at £ = 1. Corresponding profiles in figures 84, b are seen to be
similar except near the trailing edge, where the phase of the latter is a little ahead of the curve
for no displacement thickness waves. The figures show that as v increases to unity (no mean
shear) the amplitude of the motion of the vortex sheet is greatly reduced. This result might be
expected inasmuch as the vorticity fluctuations within the slot diminish in strength as » - 1
Indeed, from a consideration of the incompressible form of the vorticity equation

O0w/0t = —curl (o A v), (4.13)
in which e is the vorticity and @ the velocity, it is easy to show that, within the slot,

wy/0t oc O%x(£) /087,

where x(£) is the function defined in (2.20). The terms in & and f on the right of equation
(2.20) represent the Kelvin—-Helmbholtz instability waves, whose growth rates vanish in the
absence of mean shear (v — 1).

Relation between the shear layer flux q and the trailing edge flux qn
In the absence of the ejection of vorticity from the slot the net flux @ is equal to ¢, that
produced by the motion of the vortex sheet. When displacement thickness fluctuations are
taken into account, = g+g¢n is shared between ¢ and the component gn = ikiei’: /oy at
the trailing edge of the slot. Equations (A 27) of the Appendix may be used to show that the
fractional flux through the end of the slot is given by

gn/Q = {2iel+/(no, AF) e Jo(ex){o(er) —ii(€1) } —€ad(€1) {Jo(€2) —1Ji(e2)}]
Y(e), say, (4.14)

il

where 4, # are defined by equations (2.29)—(2.32). As o1 - oo it follows from these equations
that 4 remains finite and non-zero, and & ~ 0(1/o}). This implies that gn/Q ~ 0(1/c%),
and that the trailing edge component of the flux ultimately vanishes.
Rearranging (4.14), we have
/g = ¥(e)/{1 - ¥(e)}. (4.15)
The variations of the real and imaginary parts of ¢n/q as functions of ¢, for v = 0, 0.5, 1, are
illustrated in figure 9. As before, it is assumed that oy = 5ws/3U,. When ¢ is large one finds
from (4.15) that
qn/q ~ —1+0(1/et). (4.16)
This general behaviour is apparent in figures 9a, 5. When v = 1,
qn/q =~ —1+(1—2ie%¢) (ino /8%t (0 = 0y), (4.17)

and the asymptotic limit is approached slowly. It is evident that at high values of the Strouhal
number ¢, the net flux @ arises from a delicate imbalance between opposing fluxes ¢ of the
vortex sheet and gn at the trailing edge. The magnitude of @ amounts to a small fraction of
either of these quantities:

Q ~ O(q/edb). (4.18)

16-2
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Im (g,/q)

[y

Im (g,/q)

. Re(a/9)
Fioure 9. Dependence of ¢,/¢ on the Strouhal number € = ws/U,:
@v=0;0)v=058;(c)v=1

5. THE CASE OF NO MEAN SHEAR: DIFFRACTION BY A
PERFORATED SCREEN IN GRAZING FLOW

Unsteady motion in a slot in the absence of mean shear has been examined by Howe (1980)
in connection with the diffraction of sound by a screen perforated with an array of parallel,
equal and equidistant slots (see figure 10). Let ©»(£) denote the x,-component of the perturba-
tion velocity within the slot. Setting U = Uy, we have

v(€) = -iU(e+i8/0E) ¢ (|£] < 1). (6.1)

Howe (1980) took no account of the possibility of the ejection of vorticity from the slot and
derived the following formula:

w(E) = ‘4‘2:)* {(1+§)Jo(e) 2 sin 9 )3 i sin (n9) J, ( e)} /{Jo & —idi(e)} (& < 1), (6.2)

where, as above, % = arccos £, and ¢ is the flux defined as in (2.14).
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Equation (5.2) satisfies the Kutta condition that v(£) - 0 at the leading edge of the slot;
at the trailing edge v(£) ~ 0{1/(1 — £)t}. The flux ¢ is related to the incident acoustic pressure
bo by an equation of the form (2.27) in which F(e) is replaced by

Fo(e) = (i/€) Jo(€)/{No(e) —iJy(€)} (e > 0). (6.3)

Im F, is positive for ¢ > 0, which implies that acoustic energy is always absorbed at the slot.
This energy is expended in the formation of vorticity at the leading edge of the slot. The vortex
elements occupy a vortex sheet and are swept downstream by the mean flow. It was tacitly
assumed by Howe (1980) that the vorticity is annulled by image vortices in the plate on arrival
at the trailing edge B of the slot (see figure 2).

The conclusions of Howe (1980) are at variance with the theory of the present paper. The
appropriate comparison is with the case in which » = 1 and ¢+ - o0 in the formulae of §§2-4,
which corresponds to an absence of mean shear and displacement thickness fluctuations. In
particular, letting o - oo in (3.9), we have, instead of (5.3),

-1 [{J — 2ie(Jy—iJy) H{Jy—1ie A+1Jl)}—1eJo(Jo—1Jl)]

Fley == Toh +elITE (o= BT

(5.4)

where J, ; = J, 4(€). Similarly, although v(£) vanishes at the leading edge of the slot, we
now have v ~ 0(1/(1—£)}) at £ = 1. The inverse square root singularity of Howe (1980)
is obtained only when o, are finite, i.e. in the presence of displacement thickness waves. Such
waves are generated by slot vorticity in the immediate vicinity of the trailing edge. We here
claim that a proper modelling of the motion must take account of these boundary layer dis-
turbances, and that the analysis given by Howe (1980) is inconsistent with his hypothesis
that slot vorticity is cancelled by images at the trailing edge. To be sure, cancellation is possible
only if the displacement of the vortex sheet vanishes at the trailing edge. That this is not the
case can be deduced by integrating (5.1) and introducing (5.2) to obtain

L) = f v(€)e-EdE

__1qec _4a 2
= - (h-in -3 £ 1) (5.9

in which J, = J,(€). The infinite series is summed by using the relation
2 [
JHe) = 2 f J,,,(2€ cos 8) d,
0

and a summation formula given by Gradshteyn & Ryzhik (1980, pp. 738, 974), so that finally
¢(1) = —igeee{J3—ie(J3+JID}/ (Jo—ih). | (5.6)
The term of this result in the curly brackets is non-zero for arbitrary positive ¢, indicating that

¢(1) vanishes only if ¢ = 0, i.e. in the absence of acoustic fluctuations.

Attenuation of sound by a perforated screen

The remainder of this section summarizes the extent to which the theory of the present paper
modifies the conclusions of Howe (1980).
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The parallel slots in the screen (see figure 10) are equally spaced with periodic distance d;
4, denotes the fractional open area of the screen:

4, = 2s/d. (5.7

A plane sound wave is incident on the screen from x, > 0, and is specified by the polar angles
0,¢) (0 <6< in,0< ¢ < 2rn) which define the direction of the wave-normal (i.e. the
normal to the surfaces of constant phase), @ being the angle of incidence measured from the
positive direction of the x,-axis, and ¢ being measured from the x,-direction.

£
X9
U 6
perforated
-d— screen
U
T

Ficure 10. Diffraction of sound by a perforated screen in a uniform grazing mean flow.

0.8

=)
o
0.4} =
-2
s
3
]
0 004 008 0 004 008
M M
Ficure 11. Dependence of (a) |%)|, |7 | and (b) the attenuation on the grazing flow Mach number for a normally

incident sound wave and for kid = 0.3, 4, = 0.05. , Theory of this paper; — — —, theory of Howe (1980).

Reflexion and transmission coefficients respectively denoted by %, 7 are given by

T =1-% = 1/(1+7+13), (5.8)
in which ¥ = {kd cos 0/(1+ M sin 0 cos ¢)} Im {F(e)}, (5.9)
& = {—kdcos0/(1+Msin 0 cos ¢)} [In (2/n4,) +Re {F(e)}].} '

In deriving these formulae it is assumed that kd = wd/c < 1. Recall that F(e) was calculated
in §2 on the assumption that displacement thickness waves incident on a slot are uncorrelated
with the acoustic flux through the slot. Such waves are, in fact, produced by other, upstream
slots, and their neglect in the evaluation of (5.9) may be justified by noting that in practice
(i) disturbances translating in a turbulent boundary layer rapidly lose their coherence and
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(ii) a real screen is likely to be perforated with circular apertures with 4, < 0.05, and the
probability that an aperture lies in the wake of an upstream, neighbouring aperture is therefore
very small.

The Strouhal number e is related to the Mach number M of the grazing mean flow by

e = ws/U = (kd/2M) A, (5.10)

This can be used in equation (3.9) (for which v = 1) to determine F(¢) as a function of M for
a fixed value of the acoustic wavenumber £. The solid curves in figure 114 indicate the depen-
dence of # and . on M for a sound wave incident normally on the screen, for kd = 0.3,
4, = 0.05, and when the displacement thickness wave velocity isequal to 0.6U (o = o1 = 5¢/3).
The dashed curves represent the corresponding predictions of Howe (1980), which can be ob-
tained from (5.9) by using equation (5.3). The corresponding attenuations of the sound at the
screen (in decibels) are compared in figure 114. The attenuation is equal to —10 lg 4, where

a4 = |R2+ T2 (5.11)

which is the ratio of the sum of the transmitted and reflected acoustic intensities to that of the
incident wave.

According to figure 11 the predictions of the two theories are unlikely to be significantly
different in practice. The nature of the differences may be examined in more detail by noting,
from (5.10), that € is usually small except when M is very small (for example, for the para-
metric values used above, ¢ decreases rapidly from 0.5 when M exceeds 0.015). For small ¢

we find from (3.9) and (5.3):
F(e) ~ io/e?; Fy(e) ~ ife. (5.12)

Thus, at low Strouhal numbers the theories would agree if the phase velocity of the displace-
ment thickness disturbances were equal to that of the ambient mean flow, and it is this that
accounts for the differences illustrated in figure 11.

Equations (5.9) and the first of (5.12) may be used to show that when £d is very small

A ~ (1+022cos?6)/(1+ 2 cos 0)2, (5.13)

where 2 = 2M/nd,V and V = ¢/o is the fractional phase velocity of the displacement thick-
ness waves. It may be verified that (5.13) is within 59, of the curves shown in figure 115
when M 2 0.02. Perforated screens are deployed in heat exchanger cavities to attenuate aero-
dynamically generated sound, and this approximate formula may be applied to estimate the
value of £ that optimizes this attenuation. To do this (5.13) is averaged over all equally
probable directions (6, ¢) of the incident sound, yielding

3+02 2

Ay = f:" A(0) sin 0d0 =
This attains a minimum value of 0.57 (giving an attenuation of 2.46 dB) at 2 = 2.16. How-
ever, (A) varies very slowly in the neighbourhood of this point, being within 109, of the
minimum for 1 < 2 < 5. Any value of £ in this range will be suitable in practice, which
indicates that the uncertainty in the precise value of the fractional phase velocity V' (and its
variation with €) is not important.
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6. COMPARISON WITH EXPERIMENT

Ronneberger (1980) has used a photographic technique to obtain detailed measurements
of the displacement of a thin shear layer formed by laminar grazing flow over a rectangular
cut-out in a plate that spans the test section of a water tunnel (see figure 12). The shear layer
was driven by a piston within the cavity, and was made visible by means of dye injected into
the flow upstream of the cavity. The cavity width, 2s, was 4 cm, and the span was equal to
25 cm. The mean flow velocity U (= U,) was equal to 12.3 or 13.1 cm s~ with corresponding
values of the momentum thickness 6* of the boundary layer just upstream of the cavity equal
to 0.134, 0.08 cm. Thus 2s/6* > 1, and this would appear to justify the vortex sheet approxi-
mation to the shear layer.

2s

piston

Ficure 12. Schematic illustration of Ronneberger’s (1980) experiment.

TABLE 2

v
case e = ws/U cm st Reé, Imé,
I 0.70 13.1 1.00 —0.90
II 2.10 3.1~ 4.24 —1.48
111 3.45 12.3 6.19 —2.22

Table 2 lists data taken from Ronneberger’s paper for three typical experimental cases.
The last two columns represent Ronneberger’s experimental determination of the real and
imaginary parts of the wavenumber &, of the instability wave on the shear layer, which, in
principle, corresponds to €, of equations (2.22).

Case I

Since there is no mean flow within the cavity, we take v = 0, ¢ = 0.70 in (2.22), obtaining
€, = 0.7(1—1). Thus, although the real and imaginary parts of €, have approximately the
same magnitudes, they are about 409, greater than the analogous components predicted for
a vortex sheet at the same Strouhal number. Ronneberger measured the displacement Z of
the shear layer at selected values of £ (|£] < 1). The results were normalized with respect to
the (complex) displacement #,, say, of the piston, and the logarithmic amplitude In |Z/A,|
and the phase arg (Z/h,) were plotted as illustrated by the experimental points in figure 13.

To obtain a comparison with the theory we first observe that differences must be expected
simply because of the different geometrical configurations (sharp-edged slot of the theory as
opposed to the square-edged cavity of the experiments). These differences would be expected
to be significant precisely when the influence of displacement thickness waves is important,
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since a rigid boundary is equivalent to a distribution of unsteady vorticity. Accordingly two
comparisons are made below: the first neglects displacement thickness waves and uses (4.10)
to calculate {/g; the second uses (4.6) to determine {/@ when o, = o_ = §¢. The assumption
that o_ is finite in the second comparison is intended to model the sweeping away of vorticity
by the mean flow which enters the cavity near the trailing edge. Note that the motion within
the cavity may be taken to be incompressible, and Z/h, is therefore equal to 2£/Q, 2¢/q
according as equation (4.6) or (4.10) is being used.

1 1 1
2"' -
< $
N of N
g 0
° <
_2..
-1

Ficure 13. Comparison of theory and experiment, case I of table 2: e @ @, experiment (Ronneberger 1980);
= theory, no displacement thickness waves; = = -, theory, with displacement thickness waves.

The solid and dashed curves in figure 13 respectively represent the vortex sheet displacement
calculated without or with displacement thickness waves for » = 0 and ¢ = 0.70. In both
cases the predicted phase curves exhibit an almost linear dependence on £, corresponding to
a propagating wave, and closely parallel the experimental points. The discrepancy in the
amplitude between theory and experiment is large, and can probably be attributed to the
influence of cavity geometry. At the relatively low Strouhal number of 0.7 the hydrodynamic
wavelength of the motion 2rs/e ~ 9s is large compared with the width of the cavity. The
vortex sheet is therefore likely to be strongly coupled over the whole of its length to the image
vortices in the walls of the cavity.

Cases II, I11

The Strouhal numbers are here sufficiently large that edge effects may be expected to be
of much less significance. Reference to table 2, however, reveals that the magnitudes of the
real and imaginary parts of €, are decidedly unequal, indicating that a vortex sheet provides
a totally inadequate model of the shear layer. Ronneberger has shown that the values of &,
quoted in table 2 are in excellent agreement with the eigenvalue predictions made by Michalke
(1965) for an inviscid shear layer with a hyperbolic-tangent velocity profile. This suggests
that a comparison of experiment with the vortex sheet theory is still possible provided the
values of the wavenumbers ¢, , of the instability waves are adjusted to coincide with those of
a shear layer of finite width. We can do this by equating ¢, and &, using table 2, which is
equivalent to assigning the effective values given in table 3 to € and ». We shall continue to
assume that, when present, the displacement. thickness waves have phase velocity equal to
60 %, of the mean stream velocity U. This requires that o = §e, where € takes the values listed
in table 2 for cases II and III.

\

17 Vol. 303. A
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The solid and dashed curves in figures 14 and 15 represent the theoretical prediction
obtained as described above without and with displacement thickness waves for cases II anc
IIT respectively In the absence of displacement thickness fluctuations both figures exhibi
remarkable agreement in amplitude between theory and experiment. The agreement i
phase is not as impressive, however, although the respective experimental and theoretical ne
changes in phase across the cavity are equal.

TABLE 3
effective values
r % hY
case € v
11 3.53 0.48
111 5.14 0.47

arg (Z/ho)

In | Z/hy|

12

= = 8
-~ =
N N
=] on

= = 4

0

-1

Ficure 15. As for figure 13 for case III of table 2.

It might be thought paradoxical that the predicted phase should differ from experimen
when there is effective agreement in amplitude, inasmuch as this appears to violate continuit
of matter within the cavity. But it is readily verified that the terms involving S(e,), S(¢,) in th
open square brackets of (4.10) actually make no contribution to the net flux; the latter arise
from the first term (unity) which is always in phase with the motion of the piston (i.e. with ¢)
and, except near the edges of the cavity, corresponds to a logarithmic amplitude In |Z/k,| &
—0.45. This is much smaller than the measured and predicted amplitudes of figures 14 anc
15 and implies that the large-amplitude excursions of the shear layer are not, in fact, associatec
with a net flux through the slot.
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to —ioo by recalling (Gradshteyn & Ryzhik 1980, p. 968) that the values of H,» on the upper
and lower sides of the branch cut are related by

HP(kex™) = HP(k) +4J, (k). (A7)
Use of this in (A 6) yields )
I} = nid{d(o;) e, } (A'8)
Ii = %WiH{l)(o-j) e~ — 1/0-.7"

For n > 2 the following recurrence relation is easily derived from the definition (A 5):

I =2n—-1)I_ Jo;—I}_,—2(—1)"1/0;. (A9)
When |o;| > # it follows from (A 8) and (A 9) that
I} ~ niHM (o)) e 1%+ 0(1/0;), (A 10)

i.e., with the use of the asymptotic form of the Hankel function (Gradshteyn & Ryzhik 1980,

p. 962), '
I ~ (=i)*(ni/20,)} (o, >n, n=0,1,2,...). (A 11)

For n > |oy|, an asymptotic development of I} follows directly from (A 5):

I~ 3 fw Eékann(k) e*dk (n> m)
m=04J0

(2io,)m T'(n—m) T'(m+1)

N (—i)nméo n%I‘(n+m+1)
_ (=) io; 1 x 3(io;)? 1 x3x5(io))*
B {1+n2—1+(n2—1)(n2j_22) (m2—1) (i2—29) (nz__gz)""“} (A 12)

(see Gradshteyn & Rzyhik 1980, p. 747).

Evaluation of 04(xy), O1(xe §)
From Gradshteyn & Rzyhik (1980, pp. 527, 956)

Oo(x) = (ihy/0,) e In 2+ (nh,/20.,) H{" (o). (A 13)
Differentiating y, with respect to £, and using the alternative integral representation

, [ etk€-Dd
X4 = hoewms |

one finds by analogy with ©,(x,, £&)

F=o, (Imo, > 0), (A 14)

Oy(Xer £) = —h i+ f: s £ +1,(8) 250 9 5 i sin (19) LB b, (A 15)

—-0'_,_ n=1
i.e. by (A 5), withj = 1,
O1(Xs, &) = —h elor {gl},+i1}—2 sin & ¥, i®sin (m?)l}l} (A 16)

n=1

Evaluation of Oy(xs), O1(Xs, £)
By analogy with ©(yx,), we have

Oulxs) = iy (1-o /o) [ 7 L2 (A 17)
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Rcsoiving the integrand into partial fractions and using the definition (A 5) we obtain

Oulxs) =~ b2 (1=0_/o,) 3 TZE=E pp(e et o, (A18)
i=1 )
Again, by analogy with 0,(x;, £),
. © k(k—c_)? .
Outs, §) = hovier(t—o_/a,) [ "SR Leaw +inch
—25in (§) ¥ i*sin (m‘})Jn(k)} e-kdk. (A 19)
n=1

Introduce the partial fraction decomposition

. k(k—e_)? _ 4 Ai
(1l—o_[o,) f&) - =1 k—o; ‘ (A 20)

in which case (A 19) becomes

O, (xer £) = hcis {£S0+iS1—2sin (9) 3 i*sin (na)sn}, (A 21)
n=1
4
where Se = X AL (n>0). (A 22)
=1

The following properties of S, are required:

P L (W AL

nXiT B T - (A 23)
for » > max |oy|.
As 0y, 0y - 0 for fixed oy, 0 (i.e. as o4 - o), it follows from (A 11), (A 20) that
2
Sp = (=) X Ai(ni/20)3}, (A 24)
where, as o4 - 00, =t
Ar > 2/ (1+02), A2—>—(o_[o.)v?/(1+v?). (A 25)

The boundary conditions (2.26)

Collecting together the results derived above one obtains the following, respective explicit
forms of equations (2.26a—d):

Q {In 2—}§n(a, +a_)}+ady(ey) +BJo(e;) + (nhy /20, ) H{(o,)

« (05—€)® __Tpy__
— 12 - J D, (01— 65) — 0 .
tovih, (1—o_Jo,) j§1 7 H® (o)) el += Spoc? UT5 (A 26a)
Q +iae {Jy(e1) FiJi(er) } £ifer{o(ea) FiJy(€3)} £ dimh {H{(o,) FiH(0,)}
4 5 v
T limh,(1—0_fo,) 3 ‘Q%,Jl [H®(0;) TiHD(o,)] elo+=op = 0; (A 26, c)
j=1 i

ae[Jo(ey) — 2ie {Jy(€1) —1Ji(e1) J] + BealJo(€) — 2ies{Jy(€5) —iJy(e,) }]
+3nh, [HP(0,) — 20, {HP (o)) —iH{(0,) }]
—ym?h,(1-0_/fo,) é U—’(E};e;h [H{(o;) — 2io,{HP (o) —iHI(0;) Y] eie+=9) = 0,
e (A 264)
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Solving (A 26b)—(A 26d) for the ratios a/Q, /Q, h,/Q, we have
Jo(€z) — €(H/F) {Jy(€3) —ii(63)}

a/Q = - ’ A
80 = Joler) — o/fZA{J &) —iJ; (61)} (A 27b)

he/Q = — [even) alen) ~ (e}~ eado(en) (alen) ~ih(e)}], (A 270

where 4, #, #, are defined in equations (2.29)-(2.32).

The limit o4 — o0

Consider the case o4 — 0, €, €, finite, in which the displacement thickness waves have
vanishingly small wavelengths. The asymptotic representations of the Hankel functions
(Gradshteyn & Ryzhik 1980, p. 962) may be used to show that

G/|F ~ O0(1)oy), #F ~ 2, H|F ~ 2. (A 28)
Substituting in (2.28) we obtain

(€5 —€;1) {2i(ex+6;) — 1} ]Sy (64 |2+2{€ Jo(e1) Ji(e5) —eiJy(e,) Ji(e )}

FO) = @) Jalen) — Tolen) Jales) +2(6s—er) (o(er) — i (o)} Wolen) — (e 11"

(A 29)

Taking v = 0 in this expression we recover equation (2.28) of I, which was derived in the
absence of displacement thickness waves.
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